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Due to the similarities between large amplitude roll waves and slug flow in two-phase gas–liquid pipe
flow, a slug tracking scheme is presented with the addition of a simplified model for roll waves. The
waves are treated in a similar way to slugs, modelled as objects moving at the wave velocity and with
a pressure variation across them. The two-fluid model is solved on a stationary staggered grid in stratified
sections between moving waves and slugs. The model is dynamic meaning that the growth and decay of
waves and slugs can be simulated. The wave model implementation within the tracking scheme is dis-
cussed and demonstrated in comparison to existing experimental data on wave velocities and averaged
pressure drops. The results from the tracking scheme compared well to the experiments when waves
were initiated with the experimental frequency. Wave initiation remains as a modelling challenge.

� 2009 Elsevier Ltd. All rights reserved.
1. Background

In two-phase gas–liquid pipe flow, different flow regimes occur
depending on gas and liquid phase velocities, fluid properties, and
pipe geometries. Various numerical strategies exist for the model-
ling of flow regimes at different scales. Slug flow and flow with
large amplitude waves can be treated in an averaged manner using
repeating unit cells (Bendiksen et al., 1996; Johnson, 2005) assum-
ing steady, fully developed flow. The steady state roll wave model
of Johnson (2005) assumes a sequence of repeating ‘‘maximum
amplitude” waves with a sharp front and includes a unique inter-
face friction factor accounting for increased friction in wavy flows.
Unit cell methods give adequate predictions of average holdup and
pressure drop but do not include slug or wave dynamics such as
growth or decay. Johnson’s (2005) model gives more information
about the waves such as their velocity, amplitude and the length
from one wave peak to the next in addition to average holdup
and pressure drop but does not include wave dynamics. Alterna-
tively, slugs and waves can be resolved individually in capturing
(Andreussi et al., 2008; Bonizzi and Issa, 2003; Issa and Kempf,
2003; Renault, 2007; Holmås, 2008) or tracking (Taitel and Barnea,
1998; Nydal and Banerjee, 1996; Kjølaas, 2007; Hu et al., 2007)
schemes.

Capturing techniques use a two-fluid model on a fine grid much
smaller than the characteristic slug length to model slug flow
(Renault, 2007; Issa and Kempf, 2003; Bonizzi and Issa, 2003) or
flow with large amplitude waves (Holmås, 2008). Slug or wave ini-
ll rights reserved.

47 73593580.
Leebeeck).
tiation can be captured but the required refined grid becomes com-
putationally expensive in long pipe systems. Holmås’s (2008)
model, however, uses a more efficient numerical method, the pseu-
do-spectral Fourier method, to capture the growth of roll waves
but the solution breaks down for slug flow.

Tracking schemes are preferred for this work because coarser
grids are possible, reducing the computational expense associated
with more refined grids. In a tracking scheme, stratified sections
between slugs are modelled on a coarse fixed grid while slugs
are modelled as moving objects. Slugs, or similar moving objects,
have boundaries corresponding to sharp fronts thus avoiding
numerical diffusion and the need for excessive grid refinement
(Kjølaas, 2007). Front physics such as bubble nose velocities or
gas entrainment can also be implemented. Tracking schemes have
also been tested for plug simulations where plugs are treated as ri-
gid moving objects (Kjølaas, 2007). A combination of capturing for
slug initiation and tracking has also been tested (Renault, 2007).
The slug tracking scheme of Hu et al. (2007) includes the liquid
height profile (tail) behind waves and slugs, solving the two-fluid
model in combination with modelling the wave front as a hydrau-
lic jump.

Flow with large amplitude roll waves shows some similarities to
slug flow (De Leebeeck et al., 2007; Lin and Hanratty, 1987;
Hanyang and Liejin, 2008) which would suggest that roll waves
can be incorporated into a tracking scheme in similar fashion to
slugs. These similarities include transport of liquid, a propagation
velocity, sharp fronts and a sloping tail (Johnson, 2005; Ottens
et al., 2001; Hanyang and Liejin, 2008; Soleimani and Hanratty,
2003; Andritsos and Hanratty, 1987). Measurements also sug-
gest that waves have a pressure variation across them due to
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acceleration of liquid at the wave front (De Leebeeck et al., 2007).
The focus of this work, therefore, is on a tracking scheme including
the problem of large amplitude roll waves. To accomplish this an
integral wave model and continuous transitions between slug,
wave and stratified flow are needed.

In this work, a simple model for roll waves as moving objects
similar to slugs has been incorporated in an existing slug tracking
scheme following the latest implementation by Kjølaas (2007).
Experiments that have measured wave speed and pressure
variation across waves (De Leebeeck et al., 2007; De Leebeeck
and Nydal, 2009) have formed the basis for modelling waves as
moving objects with an associated pressure variation. A simple
model for wave velocity is suggested, allowing for transition to
and from slug flow and we propose to model gas flow and pressure
variation over a large wave as similar to gas flow through an ori-
fice. The wave tracking scheme is then demonstrated by comparing
to experimental data on wave velocity and averaged pressure drop
in roll waves (Johnson, 2005).
2. Model description

The wave model is an addition to an existing slug tracking code
following the latest implementation by Kjølaas (2007). In Kjølaas’s
Table 1
Slug model summary.

Slug sections Ul

Ug

ag

L

Stratified sections P
ag

Ul

Ug

Borders Utail

Ufront

Table 2
Wave model summary.

Wave sections Ul Liquid momentum b
Ug Gas momentum bala
H Mass balance equati
L Fixed length of wav

Stratified sections P Equations of state (5
ag Mass balance equati
Ul Liquid momentum e
Ug Gas momentum equ

Borders Utail ¼ 1:2Ul Continuous to bubb
Ufront Mass balance across
(2007) implementation of the scheme, the two-fluid model is
solved in stratified sections and hydrate plug tracking capabilities
have been added. The tracking concept is now applied to other
moving objects in the pipe, roll waves. The numerical model for
slugs on a moving grid and stratified regions on a stationary grid
has already been developed (Kjølaas, 2007) but is reviewed here
to show how the simplified wave tracking model has been incorpo-
rated with the existing scheme. The model for slugs implemented
by Kjølaas (2007) and the model for waves implemented here are
summarized in Tables 1 and 2, respectively.

The wave and slug tracking scheme uses a one-dimensional
finite volume method and applies to two-phase gas–liquid flow
in a pipe. For the purposes of wave tracking, flow is assumed iso-
thermal so the energy equation can be neglected. It is also assumed
that there is no mass transfer between the phases through evapo-
ration or condensation. Gas entrainment can be included in slugs
but is not modelled in stratified regions or waves. Droplets in the
gas phase are also neglected.
2.1. Geometry

Pipeline geometry is listed as a sequence of pipes with a
length, angle of inclination, internal diameter, and roughness for
Mixture momentum balance equation (8)
Slip relation equation (9)
Gas entrainment correlation, if any
Mass balance equations (22) and (23)

Equations of state (5)
Mass balance equation (7)
Liquid momentum equation (4)
Gas momentum equation (4)

Bubble nose or slug tail velocity equation (11)
Mass balance across slug front equation (10)

alance equation (19) with front acceleration, friction, gravity and pressure drop
nce equation (18) with orifice type loss, gravity and pressure drop

ons (22) and (23)
e front

)
on (7)
quation (4)
ation (4)

le nose velocity when H = 1, Eq. (21)
wave front, Eq. (20)
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calculating the frictional shear stress at the pipe walls. The pipeline
can consist of one or more pipes of varying length and/or inclina-
tion, and include bends. At the boundaries between two pipes
(bends) mass is free to flow in either direction.
2.2. Fluid properties

For wave tracking, the ideal gas law is used to determine the gas
density. Other fluid properties such as viscosities, liquid density,
and the molecular mass of the gas phase are specified by the user.
The constant temperature of the fluids and outlet, inlet and initial
pressure are specified so that the gas density can be calculated
from the ideal gas law. The only reason for specifying the inlet
pressure is so that the gas density at the inlet can be determined.
It does not have any other mechanical consequences. Inside the
pipe, gas density varies according to the simulated pressure.
2.3. Grids and time steps

The sequence of pipes is divided into sections including strati-
fied sections, slug sections, and large roll wave sections. The sec-
tions are the computational grid. The boundary between a
section and its neighbor is termed the section border. Since the grid
is dynamic, three grid sizes are specified: a maximum and mini-
mum grid size for stratified sections, and a minimum grid size
for slugs around 1 or 2 pipe diameters. When a stratified section
exceeds maximum length it is split into two smaller sections, or
merged with a neighboring section if it is less than the minimum
length. When slugs reach minimum length they decay to waves.
The wave front is modelled as an object with a short fixed length
equal to the minimum slug length.

In stratified sections, the gas and liquid phases are separate and
the two-fluid model is solved on a stationary staggered grid. In the
staggered grid arrangement, phase velocities are determined at
section borders, while pressure, area fraction, and other quantities
are determined at section centers. The staggered arrangement
avoids checkerboard oscillations that would occur if pressure and
velocities were determined at the same location (Ferziger and
Perić, 2001).

Slug and wave sections, however, are modelled with moving
borders. These section borders move with a border velocity and
their position is updated at each time step. The border velocities
are greater than the liquid phase velocity in stratified sections. Li-
quid slug sections completely fill the pipe and they may or may not
contain entrained gas depending on the modelling of the gas
entrainment rate at the slug front. Slug front and tail borders move
with separate velocities allowing the slug to grow or shrink in
length. Wave fronts are modelled in similar fashion to slugs, except
gas is allowed to flow over them and they have a fixed length. The
wave moves at the wave front velocity and if the wave tail velocity
is different from the front velocity, the holdup in the wave front
will either increase or decrease according to the mass balance over
the front. Thus the wave grows or decays in amplitude.
J J+1J-1 j+1 j+2jj-1

A

J-1j-1

C

Fig. 1. Index notation in (A) stratified sections, (B) slug sections, and similar to slugs, (C)
centers.
Fig. 1 illustrates the spatial index convention used in stratified
sections and slugs. The convention for slugs is also applied to
waves. In stratified sections, index J represents the section center
indicated with a dashed line while index j indicated with a solid
line is the border to the left of section J. In moving slugs and waves,
index j is the center of the slug or wave (dashed line) while index J
is its right border (solid line).

Start and end times as well as the desired simulation time step
are given by the user. Time steps are indicated by superscripts
where n represents the current time step and nþ 1 represents
the next time step. Quantities with superscript n are known at
the current time step while those with superscript nþ 1 need to
be determined.

2.4. Friction models

Frictional shear stress at the wall is expressed using a friction
factor as follows:

s ¼ 1
8

kqjUjU ð1Þ

where s is the shear stress, q is the phase density, U is the phase
velocity, and k is the Darcy friction factor.

The shear stress at the interface, si, for smooth stratified flow is
normally written as:

si ¼
1
8

kgqg jUg � UljðUg � UlÞ ð2Þ

where k is the Haaland friction factor (Haaland, 1983) for phase k
determined from:

1ffiffiffiffiffi
kk
p ¼ �1:8 log

6:9
Rek
þ �

3:7Dh;k

� �1:11
 !

ð3Þ

where Reynolds number for phase k is Rek ¼ qkDh;kUk=lk; l is the
viscosity, and � is the pipe wall roughness. Phase k can be either li-
quid indicated by subscript l or gas, subscript g. Hydraulic diameters
Dh for the gas phase and liquid phase are:

Gas phase Dh;g ¼
pD2

Sg þ Si

Liquid phase Dh;l ¼
pD2

Sl

where Sg and Sl are the wetted wall perimeters and Si is the inter-
face length. D is the pipe diameter.

2.5. Two-fluid equations for stratified flow sections

In stratified sections, the two-fluid model consisting of the gas
and liquid momentum equations, the pressure equation, and the
gas and liquid mass balance equations are solved on a staggered
grid adopting the notation as shown in Fig. 1. The discretized ver-
sion of these equations as in Kjølaas (2007) are reviewed. For the
JJ-1 j+1jj-1

B

J j+1j

wave sections. Solid lines represent section borders, while dotted lines mark section
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differential form of the mass, momentum and pressure equations
before discretization, see Electronic Annex 1.

The discretized momentum balance equation for phase k is gi-
ven as:

Mn
k;j

DUk

Dt
þmn

k;JA Un
k;J �Un

b;J

� � bUnþ1
k;J �Unþ1

k;j

� �
�mn

k;J�1A Un
k;J�1�Un

b;J�1

� �
� bUnþ1

k;J�1�Unþ1
k;j

� �
¼�an

k;jA Pnþ1
J �Pnþ1

J�1

� �
�Mn

k;jg cosh
hn

l;J �hn
l;J�1

Ln
j

�1
8

Sn
k;jL

n
j k

n
k;jq

n
k;jjU

n
k;jj Unþ1

k;j

� �
�1

8
Sn

i;jL
n
j k

n
i;jq

n
g;jjU

n
k;j

�Un
n;jj Unþ1

k;j �Unþ1
n;j

� �
�Mn

k;jg sinh ð4Þ

where M is the phase mass, DUk ¼ Unþ1
k � Un

k , Dt is the time step
size, m ¼ M=AL is the phase specific mass, A is the pipe cross-sec-
tional area, S is the wetted wall perimeter, t is time, a is the area
fraction, P is pressure, L is the section length, hl is the liquid height,
g is the acceleration of gravity (9.81 m/s2), and h is the angle of pipe
inclination from the horizontal. A positive angle indicates upward
inclination. The subscript b indicates a quantity associated with a
border, subscript k indicates the current phase, subscript n indicates
the neighboring phase, and subscript i indicates a quantity associ-
ated with the interface. Upwind discretization is used for the con-
vection terms. Upwind quantities are indicated with a hat, e.g.,
the velocity bUnþ1

k;J in the above equation.
The implementation of the two-fluid model in stratified regions

means that the convection terms, the second and third terms in Eq.
(4), are included. This in turn means that the gradually sloping li-
quid height profile (tail) behind wave fronts and slugs can be re-
solved on a sufficiently refined grid.

The following equation, the pressure equation, is a combination
of the mass balance and equations of state for both phases:

X
k

Vn
k;J

qn
k;J

@qn
k;J

@P

� �
Tk

Pnþ1
J � Pn

J

Dt

" #
þ A Unþ1

b;jþ1 � Unþ1
b;j

� �
þ
X

k

1
qn

k;J

m̂n
k;jþ1A Unþ1

k;jþ1 � Unþ1
b;jþ1

� �
� m̂n

k;jA Unþ1
k;j � Unþ1

b;j

� �h i
¼ ws;J

ð5Þ

where V is volume, T is temperature, and
@qn

k;J

@P

� �
Tk

is determined

from the ideal gas law. The pressure equation (5) is solved simulta-
neously with the momentum balance equation (4) to get phase
velocities defined at section borders and pressure defined at the
center of stratified sections. The model can work with either an
incompressible or a compressible liquid in stratified flow. When
single phase liquid occurs, as in a slug, the computational domain
is divided into compressible and incompressible regions. This
avoids the problem of having one universal scheme to work for both
compressible and incompressible cases.

The volume error term ws;J in Eq. (5) is defined as follows:

ws;J ¼
VJ

Dt

X
k

mk;J

qk;J
� 1

 !
ð6Þ

It is included because the pressure equation is not formulated in a
mass conserving manner (Kjølaas, 2007; Ferziger and Perić, 2001;
Prosperetti and Tryggvason, 2007) and the use of the staggered grid
can introduce a first order error from acceleration by a body force
(Fletcher and Thyagaraja, 1991). Including the volume error term
ensures consistency between pressure and mass over time, without
iteration.

The discretized mass balance equation uses an implicit time
integration which is more robust for longer time steps. Mass is
determined at the centers of stratified sections using the following
equation:
DMk;J

Dt
þ
bMnþ1

k;jþ1bLn
jþ1

Unþ1
k;jþ1 � Unþ1

b;jþ1

� �
�
bMnþ1

k;jbLn
j

Unþ1
k;j � Unþ1

b;j

� �
¼ 0 ð7Þ

The mass balance equations are solved after the pressure equation
and the phase fractions are determined from the masses and densi-
ties at the new pressure. As the phase fractions may not sum to
unity, the phase fractions are normalized and the error term is
introduced as a source term in the pressure equation (5). Including
the error term in the pressure equation allows the equations to be
solved non-iteratively and reduces the computational cost, and
the implicit formulation ensures stability (Kjølaas, 2007).

2.6. Slugs

The dynamics of the flow in a slug can be determined from a
mixture momentum equation and a slip relation. A simplified ver-
sion of the mixture momentum equation is the liquid equation
without the gas interaction term. The discretized version of the li-
quid momentum equation in slugs takes a similar form to Eq. (4),
except interface friction can be neglected (no interface), as follows:

Mn
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Dt
þmn
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l;J�Un
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l;J �Unþ1
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8
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n
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n
l;jq

n
l;jjU

n
l;jj Unþ1

l;j

� �
�Mn

l;jg sinh ð8Þ

The second and third terms in Eq. (8) account for pressure variation
due to acceleration of the liquid in the slug front.

Gas velocity in a slug is determined using a slip relation or
assuming no slip:

Ug;slug ¼ SdðUl;slug þ voÞ ð9Þ

In the simplest case of no slip, the distribution slip ratio Sd is unity
and the averaged drift velocity vo is zero.

The slug front velocity is determined from a mass balance
across the front, as follows:

Ufront ¼
HslugUnþ1

l;slug � HbubbleUn
l;bubble

Hslug � Hbubble
ð10Þ

where H is liquid holdup, the subscript slug indicates quantities
associated with the slug while subscript bubble indicates quantities
belonging to the stratified section neighboring the slug. For the case
of a slug without gas entrainment, the holdup Hslug goes to 1 and the
local mixture velocity in a slug goes to the liquid velocity Ul;slug .

Slug tail or bubble nose velocity is determined using the follow-
ing equation, proposed by Bendiksen et al. (1996) and Bendiksen
(1984):

Utail ¼ CoUmix þ Uo ð11Þ
where Umix ¼ HslugUl;slug þ ð1� HslugÞUg;slug is the local mixture veloc-
ity in the slug. Values for Co and Uo which give the largest Utail are
applied, as follows:

Co¼1:05þ0:15sin2 h Uo¼UovþUoh if jUmixj<3:6
ffiffiffiffiffiffi
gD

p
=cosh

Co¼1:2 Uo¼Uov if jUmixj>3:6
ffiffiffiffiffiffi
gD

p
=cosh

Uov¼0:35
ffiffiffiffiffiffi
gD

p
sinh Uoh¼�0:54

ffiffiffiffiffiffi
gD

p
cosh

A summary of the slug model and the quantities determined is
given in Table 1.

2.7. Waves

The wave model includes a pressure variation across the
wave front due to liquid acceleration at the front as observed
experimentally (De Leebeeck et al., 2007). The overlapped holdup



Fig. 3. Schematic of gas flow through an orifice plate (top) compared to gas flow
over a large wave (bottom).
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and pressure time traces corresponding to a video snapshot of a
wave are plotted as an example in Fig. 2. The snapshot comes from
an experiment where air and water are flowing in a 0.06 m internal
diameter horizontal pipe at atmospheric conditions with superfi-
cial gas velocity Usg ¼ 5:89 m=s and superficial liquid velocity
Usl ¼ 0:17 m=s. The typical wave velocities and pressure variations
observed in waves during this experiment were 1.86 m/s and
1400 Pa, respectively (De Leebeeck et al., 2007).

In the wave model, it is assumed that pressures in both gas and
liquid phase are equal. For a known pressure variation, the liquid
phase velocity in the wave front can be determined from the liquid
momentum balance equation. The gas phase however needs its
own model: gas flow over a large wave can be thought of as similar
to gas flow through an orifice. A schematic of a large wave com-
pared to an orifice plate is shown in Fig. 3. The adaptation of a sin-
gle phase orifice relation to gas flow over a large roll wave follows.

Starting with the single phase gas velocity through the throat of
an orifice, as in the following equation (White, 2005), the orifice
relation is adapted to wave flow:

Ut ¼ CdAt
2DPorifice=q

1� At=Apipe
� �2

 !1
2

ð12Þ

where Cd is the discharge coefficient, At is the orifice throat area,
DPorifice is the pressure variation across the orifice, and Apipe is the
pipe cross-sectional area.

Rewriting Eq. (12) to give the pressure variation across the ori-
fice gives the following:

DPorifice ¼
1
2

1

C2
d

qU2
t ð1� ðAt=ApipeÞ2Þ ð13Þ

In thinking of gas flowing over a large wave front as similar to
gas flow through an orifice, the following modifications are made
to the orifice relation in Eq. (13):

Ut ) Ug;wave � Ufront ð14Þ
U2

t ) ðUg;wave � UfrontÞjUg;wave � Ufront j ð15Þ
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Fig. 2. Experimental pressure and holdup time traces, and corresponding image of
an individual wave from air/water experiments at atmospheric pressure, horizontal
pipe, Usg ¼ 5:89 m=s; Usl ¼ 0:17 m=s. The locations of holdup probes H3 and H4 and
the pressure transducer P are 11.88 m, 14.39 m, and 13.67 m from the inlet of the
pipe, respectively (De Leebeeck et al., 2007).
The wave is no longer stationary so Ut is replaced with the differ-
ence between the gas phase velocity over the wave Ug;wave and
the velocity of the wave front Ufront .

The orifice relation is for single phase flow where the gas occu-
pies the entire pipe cross section. In the case of two-phase flow, the
gas phase occupies only a fraction of the pipe. In Eq. (13), the term
Apipe is replaced with the gas phase area ahead of the wave front
Ag;bubble. The area of the orifice throat can be thought of as the area
occupied by the gas at the wave front Ag;wave. The ratio of the two
areas can then be written in terms of gas or liquid area fractions,
as follows:

At

Apipe
) Ag;wave

Ag;bubble
¼ Ag;wave=Apipe

Ag;bubble=Apipe
¼ 1� Hwave

1� Hbubble
ð16Þ

where Hwave is the holdup in the wave front.
Finally the corresponding pressure loss to be added in the gas

momentum equation for a wave is written as follows:

DPwave¼
1
2

1

C2
d

qg 1� 1�Hwave

1�Hbubble

� �2
 !

ðUg;wave�UfrontÞjUg;wave�Ufrontj
" #

ð17Þ

Empirical relations for the discharge coefficient Cd have been deter-
mined, depending on the ratio of the orifice throat to pipe diameter,
Reynolds number, and the type of taps (corner taps or flanges for
example) in the orifice (White, 2005). The typical range of values
for Cd is from 0.59 to 0.66 (White, 2005) in an orifice. Since there
are some differences between an actual orifice and a wave front,
the question then is what should Cd be for the case of a wave? Var-
ious values of Cd can be used in simulations and compared to exper-
imental data on waves. From there an optimal value of Cd for waves
can be determined. Experimental measurements of pressure varia-
tion across a wave front (De Leebeeck et al., 2007; De Leebeeck and
Nydal, 2009) led to an estimate of the discharge coefficient in the
range of 0.2–0.4. These values may be lower than Cd ¼ 0:6 in an
actual orifice because of increased losses in the wave such as
increased roughness on the wave’s surface or losses due to droplet
formation and air entrainment in the wave front.

The orifice type relation replaces the gas wall and interfacial
shear stresses as a loss term. The following gas momentum equa-
tion for a wave front is used to determine the gas velocity by relat-
ing it to the pressure variation across the wave front:

Mg;wave

Dt
DUg;wave þ ð1� HwaveÞA

1
2

1
C2

d

qg;wave 1� 1� Hwave

1� Hbubble

� �2
 !

� � Ug;wave � Ufront
� �

Ug;wave � Ufront

		 		
¼ ð1� HwaveÞAðPJ�1 � PJÞ �Mg;waveg sin h ð18Þ
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Using the same pressure variation ðPJ�1 � PJÞ as in Eq. (18), the
following liquid momentum balance equation is used to determine
the liquid phase velocity in a wave front:

Ml;wave

Dt
DUl;wave þ Hql;waveAðUn

l;wave � UfrontÞðUn
l;bubble � Unþ1

l;waveÞ

¼ HwaveAðPJ�1 � PJÞ þ �1
8

LSl;wavekl;waveql;wavejU
n
l;wavejU

nþ1
l;wave

� �
�Ml;waveg sin h ð19Þ

In the liquid phase, the main component giving pressure variation is
the acceleration of the liquid at the wave front. There is also a con-
tribution from liquid wall friction and gravity for the fixed length of
the wave front.

Waves fronts are modelled as moving objects similar to slugs
but they have a fixed length of 1–2 pipe diameters and move with
the wave front velocity. The front velocity of a wave is determined
in exactly the same way as for slugs, through a mass balance across
the front. Rewriting Eq. (10) in terms of wave quantities gives:

Ufront ¼
HwaveUnþ1

l;wave � HbubbleUn
l;bubble

Hwave � Hbubble
ð20Þ

where subscript wave indicates wave related quantities.
One aim of the wave tracking scheme was to have a simplified

model, therefore a simplified wave tail speed relationship was de-
sired. The proposed wave tail speed is one which gives a continu-
ous transition to slug flow, as in the following equation:

Utail ¼ CoUl ð21Þ

A factor of Co ¼ 1:2 allows for continuous transition between wave
and slug flow when the liquid holdup in a wave approaches unity,
assuming no gas entrained in the slug. Modifications to this relation
can be done when gas entrainment is included in the slug.

The mass balance equations in a wave or slug are the same,
where the change in mass in a given time step is the difference
in mass flux in and out. In contrast to stratified sections, mass in
waves and slugs is treated explicitly so that slug length or wave
height is consistent with the masses. This is achieved automati-
cally by integrating the wave or slug masses explicitly (Kjølaas,
2007), as in the following equations:

DMl

Dt
¼ Fluxin� Fluxout ¼

Mn
l ðU

nþ1
l �UtailÞ

L
�Mn

l ðU
nþ1
l �UfrontÞ

L
ð22Þ

DMg

Dt
¼ Fluxin� Fluxout ¼

Mn
gðU

nþ1
g �UtailÞ

L
�

Mn
gðU

nþ1
g �UfrontÞ

L
ð23Þ

H¼Mnþ1
l

ALql
ð24Þ

Eqs. (22) and (23) are the liquid phase and gas phase mass balance
equations, respectively, in both slugs and waves. The liquid holdup
can then be determined as in Eq. (24). Since wave fronts are mod-
elled with a fixed length and they move at the wave front velocity,
the tail velocity only appears in the mass balance equations (22)
and (23). If the front speed is larger than the tail speed the liquid
mass in the wave will increase and vice versa. Therefore wave fronts
can increase or decrease in amplitude. For slugs, if the front velocity
is different from the tail velocity, the slug will increase or decrease
in length.

A summary of the wave model and quantities determined is
given in Table 2.

2.8. Initiation and decay of slugs and waves

In principle, this scheme could be used for capturing wave ini-
tiation using the two-fluid model followed by slug tracking similar
to Renault (2007) if the grid is sufficiently refined. On a coarser grid
in use here, an initiation model for waves is needed. This could be
implemented by testing the inviscid Kelvin–Helmholtz (K–H) crite-
rion (Lin and Hanratty, 1986; Barnea and Taitel, 1993) at the tran-
sition from stratified flow, as follows:

Al

qlSi
þ Ag

qgSi

 !
ðql � qgÞg cos h� ðUg � UlÞ2 > 0 ð25Þ

Waves can also be inserted in the pipe at a given frequency, as is
done here. For testing in this work, they are inserted using experi-
mentally measured frequencies.

The initiation of slugs occurs when the holdup in a wave or the
liquid level in a low point exceeds a user specified maximum hold-
up, for example H ¼ 0:99. In that case, the section will be converted
to a slug. Slugs can also form if two waves merge or grow if a slug
overtakes a slower moving wave.

Slugs are removed either when they exit the pipe or when their
length goes below a user specified minimum of one or two pipe
diameters, at which point it becomes a wave. If the wave continues
to decay, it will be removed when the holdup in the wave ap-
proaches the holdup in the stratified section in front of it. This
means the wave has decayed in amplitude until it reaches the
stratified liquid level surrounding it.

3. Model implementation

The tracking scheme has been developed in the C++ program-
ming language using object oriented techniques. Object oriented
programming promotes code reuse through inheritance and en-
hances modularity which reduce complexity of the program and
allow changes to be made more easily. Physical objects such as
slugs and waves can be represented as computational objects in
the code through the use of classes. Using list structures simplifies
the grid management. Equations are also represented computa-
tionally using a generic class structure including a mass balance
equation class and a momentum balance equation class. The model
implementation is discussed in Kjølaas (2007).

3.1. Computational sequence

The mass, momentum, and pressure equations have been for-
mulated implicitly for increased stability and linearized in terms
of the unknown primary variables velocity U, pressure P, and spe-
cific mass m. The solution is found by using direct Gauss-elimina-
tion. The computational sequence is as follows:

1. Equation coefficients for moving borders on wave and slug sec-
tions are determined.

2. The pressure and momentum balance equation system matrix
is built. This matrix is a banded system with three upper and
three lower co-diagonals. The equation system is then solved
giving phase velocities and pressures.

3. The mass balance equations are solved with the new velocities.
4. Phase masses, phase densities (state equation), and volume

errors are updated.
5. Waves and slugs are inserted or removed, sections are merged

and split as necessary.
6. The simulation moves on to the next time step, starting at step

1 again.

3.2. Grid sizes

Modelling on a coarse grid gives square shaped bubbles, slugs,
and waves. However, the liquid height profile behind slugs and
waves, their tails, can be reproduced by refining the grid in the



Table 3
An example showing the effect of varying minimum slug length on computed values.
These values were computed for a 0.1 m internal diameter horizontal pipe at 8 bar
with Usg ¼ 4:5 m=s and Usl ¼ 0:2 m=s. The corresponding experimental wave velocity
and average pressure drop were 2.13 m/s and 181.6 Pa/m, respectively, from which
percentage differences were calculated.

Minimum slug length
(multiple of pipe
diameter) (m/s)

Simulated values Absolute percentage
difference (%)

Wave
velocity
(m/s)

Pressure
drop
(Pa/m)

In wave
velocity

In pressure
drop

1
2

2.2 185 3.3 1.9

1 2.16 189 1.4 4.1
2 2.08 193 2.3 6.3
3 2.0 172 6.1 5.3
4 1.99 167 6.6 8.0
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stratified region. As this only changes the resolution of stratified
sections, the wave and slug velocity computations will not be af-
fected. Fig. 4 shows how an experimental holdup time trace com-
pares to a simulated time trace on a fine (maximum grid size 10
pipe diameters) and on a coarse grid (maximum grid size 100 pipe
diameters) at the same conditions. The experiments and simula-
tions were run for an air–water system at atmospheric pressure.
The simulation ran considerably faster with the coarse grid com-
pared with the refined grid case.

The minimum slug length corresponds to the short length of a
wave front on the order of a pipe diameter. This length will deter-
mine the wave front growth rate and how soon slugs decay into
waves. The effect of increasing the minimum slug length is that
slugs decay to waves sooner, and the growth of wave fronts is de-
layed. Taking a simulation example with sulfurhexafloride (SF6)
gas and water at 8 bar in a 0.1 m I.D. horizontal pipe, Table 3 shows
the effect of varying the minimum slug length on the computed
wave velocity and average pressure drop. The stratified section
length is kept within 8–50 pipe diameters and time step size held
below 0.01 s. Increasing or decreasing the minimum slug length by
a factor of one or two results in a deviation from the experimental
quantities of no more than 8.0%.

The time step in the model is controlled based on the Courant–
Friedrichs–Lewy (CFL) condition, in stratified sections which have a
stationary grid. The Courant number is as follows:

C ¼ UDt=Dx ð26Þ

where C is the Courant number and Dx is the length of a grid sec-
tion. C is kept lower than unity for accuracy. The Courant number
is tested to see if it reaches unity. If it does, the time step is changed
from the user specified value so that C stays below the limit of
unity. Taking the same simulation example as above, the typical li-
quid and gas velocities coming into a stratified grid section are
1.26 m/s and 5.14 m/s, respectively. For a time step of 0.01 s, and
a minimum stratified section length of 0.8 m (or 8 pipe diameters),
the Courant number for the liquid phase is 0.0158 and for the gas
phase is 0.0642.

3.3. Wave and slug dynamics

Wave dynamics such as waves growing to slugs, or slugs decay-
ing to waves is inherent in the tracking model. An example simu-
lation of a wave which grows to a slug and then decays into a wave
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Fig. 4. Liquid holdup time traces using air and water at atmospheric pressure in a 0.06 m
simulated on a fine grid (length 10 pipe diameters). Bottom: a coarse grid (length 100 p
again is shown in Fig. 5. The pressure variation across the wave, li-
quid holdup and velocity in the wave object as it moves are plotted
against time. When a wave becomes a slug the pressure variation
across it and the liquid velocity increase, and the holdup
approaches one. When the slug decays again, pressure variation,
liquid velocity and holdup decrease. The time traces are cut off
when the wave exits the pipe.

4. Results and discussion

Simulation results from the slug tracking scheme with incorpo-
rated wave tracking capability presented above are compared to
experimental data (Johnson, 2005) specifically on roll waves.

4.1. Description of experiments

Simulations were run matching the flow conditions, fluid prop-
erties, and pipe geometry in Johnson (2005). A total of 984 exper-
iments on two-phase roll waves were carried out at the Institute
for Energy Technology (IFE) in Norway using sulfurhexafloride
gas and water at 8 bar and 20 �C to simulate high pressure flows
(Johnson, 2005). Pipe inclinations varied from 0 to 5 deg with gas
superficial velocities, Usg , ranging between 0.5 and 4.5 m/s and a
variety of liquid superficial velocities, Usl, in the range of 0.1–
0.6 m/s at each inclination and Usg . The test section was 25 m long,
internal pipe diameter was 0.1 m and experiments ran for 100 s.
45 50 55 60 65 70
 (sec)

45 50 55 60 65 70
 (sec)

5 50 55 60 65 70
 (sec)

internal diameter pipe (De Leebeeck and Nydal, 2009). Top: experimental. Middle:
ipe diameters). Usg ¼ 6:09 m=s; Usl ¼ 0:18 m=s; h ¼ 2 deg.



Fig. 5. Pressure variation, liquid holdup, and liquid velocity in a wave vs. time for (A) a wave growing to (B) a slug and then decaying to (C) a wave again. Simulation run at
atmospheric pressure with Usg ¼ 5:87 m=s; Usl ¼ 0:13 m=s; h ¼ 1 deg, and pipe internal diameter 0.06 m (De Leebeeck and Nydal, 2009).
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The gas density and viscosity were 50 kg/m3 and 1:61� 10�5 Pa s,
and water density and viscosity were 998 kg/m3 and 1� 10�3 Pa s,
respectively.

The data available from the experiments included average pres-
sure drops, superficial velocities, average liquid height, wave veloc-
ities, the length from one wave peak to the next, and wave
amplitudes. Wave velocities were obtained from cross correlations
between liquid height time traces. Peak to peak lengths were esti-
mated from the dominant wave frequency and the wave velocity.
Experimental results of interest for comparison with the present
numerical model were in particular the wave speed and average
pressure drop.
Table 4
Cases simulated.

Inclination (deg) Usl (m/s) Usg (m/s)

0 0.2, 0.4 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5
0.1 0.2, 0.25, 0.35, 0.4 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 4.5
0.25 0.2, 0.3, 0.4 1.6, 1.8 2.2, 2.4, 2.6, 3.0, 3.5, 4.0, 4.5
1 0.1, 0.2, 0.3 2.0, 2.5, 3.0, 3.5, 4.0, 4.5
4.2. Simulations

Simulations were run using the same conditions as above. The
model domain was 25 m long and each simulation was run for
100 s. Measured superficial velocities were set at the inlet bound-
ary and the inlet source gas density was determined at 8 bar from
the ideal gas law. The pressure at the outlet boundary was set to
8 bar. Various Usl and Usg combinations were simulated at four pipe
inclinations: 0, 0.1, 0.25 and 1 deg. Grid sizes were as follows: the
minimum slug length was one pipe diameter, the minimum strat-
ified section length was 8 pipe diameters and the maximum length
was 50 pipe diameters. A time step of 0.01 s was specified.

Waves were inserted at the dominating frequency determined
in experiments. This frequency in combination with the wave
velocity was used to find the experimental length between subse-
quent wave peaks but was not explicitly listed in Johnson (2005).
Using the given wave velocity and experimental length, the wave
frequency was calculated and used to specify a time delay between
wave front insertions in the simulation. For example, the experi-
mental case Usg ¼ 4:5 m=s; Usl ¼ 0:2 m=s, with pipe inclined at
0 deg has a corresponding length between subsequent wave peaks
of 2.42 m and wave speed of 2.13 m/s (Johnson, 2005). The exper-
imental length Lexpr is determined as follows, knowing both domi-
nating frequency fd, and experimental wave velocity Uwave

(Johnson, 2005):

Lexpr ¼
Uwave

fd
ð27Þ

For the stated example, the dominating frequency was 0.88 Hz
or a delay of 1.1 s between waves. In the simulation of this case,
waves were inserted close to the inlet every 1.1 s.

A sampling of 65 experiments were chosen as examples to com-
pare to simulations. Simulations could have been run for all the
experiments conducted but this would have been time consuming
since nearly 1000 experiments were made. The smaller selection
covers a range of Usg ; Usl, and pipe inclinations summarized in Ta-
ble 4. The velocities Usl and Usg for a given experimental case are
summed together to obtain the mixture velocity, which is used
in later plots.

4.3. The discharge coefficient Cd

Estimating Cd has been one of the challenges of simplification in
this model. Cd is an open parameter in the simplified model using
an orifice type relation that needs to be chosen. A test case with
Usg ¼ 4:5 m=s and Usl ¼ 0:2 m=s in a horizontal pipe was used to
determine the model’s sensitivity to various values of Cd. These re-
sults are listed in Table 5. For reference, the experimentally
determined wave velocity is 2.13 m/s and the pressure drop is
181.6 Pa/m. The results indicated that if Cd was doubled to 0.8 or



Table 5
Simulated wave velocity and pressure drop for different values of discharge
coefficient Cd . Simulations were run for a 0.1 m internal diameter horizontal pipe at
8 bar with Usg ¼ 4:5 m=s and Usl ¼ 0:2 m=s.

Discharge coefficient Cd Wave velocity (m/s) Pressure drop (Pa/m)

0.2 2.72 234
0.4 2.16 189
0.6 1.88 165
0.8 1.66 155
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halved to 0.2, wave velocity and pressure drop varied by about
25%. The wave velocity and pressure drop calculated with
Cd ¼ 0:4 gave the most reasonable approximation to the experi-
mental values and so Cd ¼ 0:4 has been used for all other
simulations.
4.4. Wave velocities

A comparison of the experimental and simulated wave veloci-
ties was made. These are plotted against the mixture velocity
ðUsl þ UsgÞ in four separate graphs for each pipe inclination in
Fig. 6. Since two or three different Usl values in combination with
a wider range of Usg were simulated, there appears to be two or
more data sets in each plot. For similar mixture velocities, a larger
wave velocity corresponds to a larger Usl value. The experimental
wave speeds were smaller than the mixture velocity whereas slug
velocities would be approximately 1.2 times the mixture velocity.
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Fig. 6. Experimental wave velocities (Johnson, 2005) comp
The tracking scheme reproduced waves with velocities of the ex-
pected magnitude, that is, less than what the bubble nose velocity
of a slug would be for a given Usg and Usl combination.

The average absolute percentage difference between model and
experiment was 8.4% with maximum difference of 43% and mini-
mum of 0.36%. There were 56 of 65 total simulated wave speeds
within 20% of the experimental values, indicating good agreement.
The simulated case with the largest percentage difference be-
longed to pipe inclination 1 deg, Usg ¼ 2:5 m=s, and Usl ¼ 0:3 m=s.
Most of the waves inserted in this simulation grew to slugs. The
velocity used in the percentage difference estimation was the aver-
age velocity of waves before they grew to slugs, this result is
slower than what was measured experimentally. Considering the
simplicity of the model, the comparison with experimental wave
speeds are good.

4.5. Pressure drops

It has been observed experimentally that pressure drop in flow
with large amplitude waves increases significantly compared to
smooth stratified flow (Holmås, 2008; Espedal, 1998; Fernandino,
2007). Considering the assumptions in the tracking scheme, it is
also expected that pressure drop will increase with the number
of waves in the pipe and that if slug flow occurs pressure drop will
be larger still. For comparison, a case at horizontal, Usg ¼ 3:5 m=s;
Usl ¼ 0:2 m=s with a wavelength of 2.65 m corresponding to a de-
lay of 1.5 s between waves gives an averaged pressure drop of
119 Pa/m compared with an experimental value of 121.7 Pa/m
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ared with results from dynamic tracking simulations.
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Fig. 7. Experimental pressure drops (Johnson, 2005) compared with averaged pressure drops from tracking simulations.
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(Johnson, 2005), but with stratified flow (infinite time delay be-
tween waves) the pressure drop is 68 Pa/m.

Experimental pressure drops and averaged pressure drops from
the tracking scheme are compared in four separate graphs for each
pipe inclination in Fig. 7. As in Fig. 6, there appears to be two or
more data sets in each plot. For similar mixture velocities, higher
pressure drops correspond to larger Usl. The model predicted pres-
sure drops quite well, with an absolute percentage difference of
17% on average, minimum of 0.29% and maximum of 50%. Two
thirds of the modelled data points were within 20% of the experi-
mental data. In the case of the largest deviation in a horizontal pipe
with Usg ¼ 2 m=s and Usl ¼ 0:4 m=s, some of the simulated waves
grew to slugs. Since slugs occurred the modelled pressure drop,
140 Pa/m was larger than the experimental 93 Pa/m (Johnson,
2005). Some of the pressure predictions could be larger than ex-
pected because waves appeared too frequently in the simulation,
or because some of them grew to slugs.
5. Conclusions

A simplified model for large amplitude roll waves has been
implemented and tested in a dynamic slug tracking scheme.
The wave model includes a simple relation for wave speed which
allows for a smooth transition to slug flow. Pressure variation
across wave fronts is modelled with a modified orifice type rela-
tion. The model predicts wave velocities which are less than slug
velocities and pressure drops larger than in the case of stratified
flow.
Dynamic flow simulations have been compared with available
experimental data for roll waves at high gas densities. The waves
in the simulations were initiated with a frequency similar to the
experimental frequencies. The resulting comparison between com-
puted wave velocities and pressure drops were good with average
percentage differences of 8.4% and 17%, respectively. The quality of
wave and slug tracking simulations depends on the initiation mod-
els. It remains as a challenge to develop grid independent initiation
models for wave and slug tracking on a coarse grid.
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